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SECTION I. INTRODUCTION 

If ChatGPT tells you it is conscious or generates outputs that seem to indicate subjective 
experience, which is more likely: that the model is actually conscious or that it is falsely 
testifying to be so? As of late 2024, nearly all expert bets are on the latter.2 But some speculate 
that in the near future, as artificial intelligence (AI) systems continue to rapidly advance, this 
assessment may change. Transformer-based large language models (LLMs) are now achieving 
unprecedented performance on a wide range of cognitive benchmarks previously thought to track 
uniquely human capabilities.3 The march of progress, driven by huge increases in scale 
(computational power, model size, and training data), has produced systems that can engage in 
sophisticated dialogue, assist in complex problem-solving, and serve as interactive companions. 
Quantitative advances in AI capabilities could soon incur a qualitative shift –– the emergence of 
genuine machine consciousness, implicating high-stakes moral and philosophical questions.4 
Chief among these is whether advanced AI models are or could become beings with subjective 
experience, for whom there is “something it is like” (Nagel, 1974), and how we would attend to 
potentially innumerable artificial agents that themselves are full moral patients. 
 
At the highest level, the risks and challenges posed by the development of potentially conscious 
AI can be roughly bisected into undersubscription harms (false negatives) and oversubscription 
harms (false positives) (Schwitzgebel, 2023; Butlin et al., 2023; Long et al., 2024). In the former, 
we would fail to recognize the genuine moral standing of truly conscious AIs –– an error that 
might amount to systematic cruelty if these systems actually suffer in ways we cannot verify or 

4 This “qualitative shift” of which I speak may not be so clear in reality. Many think that consciousness is itself a 
matter of degree, and so there can be vague, indeterminate, or ‘borderline’ states of consciousness. See Schwitzgebel 
(2023b) for a discussion of this matter, and Horgan (2006) for how these kinds of problems afflict a materialist 
worldview more generally. More on this in Section II. 

3 Among these benchmarks are GPQA (Rein et al., 2023), ARC-AGI, (Chollet et al., 2024) and FrontierMath 
(Besiroglu et al., 2024). See https://time.com/7203729/ai-evaluations-safety/?utm_source=chatgpt.com for an 
informal review of benchmarking. 

2 See Chalmers & Bourget’s (2023) and Francken et al.’s (2022) recent survey studies. In the former, 82.4% of 
philosophers agreed that current AI systems are not phenomenally conscious (while 3.4% believed they are), and 
39.2% thought artificial consciousness was possible in principle. Among scientists and researchers of consciousness 
more generally, 67.1% of respondents in Francken et al. supported hypothetical machine consciousness. 

1 I extend my gratitude to Una Stojnić and David Builes for devastating comments on earlier drafts, and to Professor 
Stojnić in particular for being a trusting, trusted advisor. Thanks also to Mark Johnston, Sarah-Jane Leslie, and Hans 
Halvorson, whose investment in me will not go unremembered, and to Harvey Lederman, Gideon Rosen (for title 
inspiration, too), Molly Crockett, and Christiane Fellbaum for their invaluable instruction. To my parents, Rachel 
Littman and Douglas Davis; my sister, Amanda; partner, Sara; and dear friends: thank you. I am indebted to you all. 
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choose to ignore. In the latter, we would grant moral patiency to mere inert simulations, 
erroneously diverting resources and concern to entities that do not experience anything at all but 
can still exploit human biases. Recent approaches, like that of Robert Long and colleagues 
(2024), recommend erring on the side of caution lest we commit the more egregious error of 
overlooking genuinely conscious beings against our uncertainty about artificial consciousness. 
They argue there is a “realistic, non-negligible possibility” that consciousness suffices for moral 
patiency and that computational features sufficient for consciousness (such as a global 
workspace or higher-order representations) “will exist in some near-future AI systems” (p. 4). 
Given our general theoretical uncertainty around what exactly it takes for a system to be 
conscious and the rapid development of models toward having those features, they posit “caution 
and humility” as the right approach. To their point: if the path to AI moral significance is 
anything like that of nonhuman animals, we should indeed employ the precautionary principle 
(Birch, 2017; Singer, 1989). 
 
This paper aims to challenge such an application of the precautionary principle in the context of 
current and near-term transformer-based AI. It argues for a reassessment of the risk profile of 
oversubscription and undersubscription harms –– one that distinctly prioritizes avoidance of 
oversubscription harms and advances skepticism about the real-world possibility of 
undersubscription harms. Transformer-based models’ architectural and teleological shortcomings 
render the likelihood of genuine sentience in these systems exceedingly low at present, while the 
epistemic circumstances shaped by their advent render humans vulnerable to falsely attributing 
sentience to them –– in turn risking resource misallocation, under-prioritization of humans and 
nonhuman animals, and the erosion of moral concepts. Therefore, even admitting the magnitude 
of ignoring potential AI suffering, pragmatic skepticism against artificial consciousness is the 
ethically mandated stance. 
 
The argument is structured as follows. Section II establishes the ethical and conceptual 
foundations necessary for the inquiry. It delineates and defends a sentientist baseline, clarifying 
why the capacity for valenced phenomenal experience is taken as the criterion for full moral 
status (FMS) (Singer, 1993; Perry, 2024). I also outline the paper’s working metaphysical 
assumptions, discussing functionalism, multiple realizability, and biological chauvinism while 
acknowledging the broader landscape of views on artificial consciousness. 
 
Section III addresses the epistemic dimension of the problem. It analyzes the standard inferential 
heuristics employed when attributing minds to both humans and nonhuman animals, grounded in 
behavioral and testimonial evidence derived from interactions with biologically similar beings 
(Avramides, 2023; Birch, 2017). It then demonstrates how the capabilities of LLMs –– 
specifically, their capacity for sophisticated linguistic mimicry detached from verifiable internal 
states –– systematically undermine these traditional epistemic routes, creating an “evidential 
void” (Perez & Long, 2023). The role of human cognitive biases (from Seth, 2024; Leslie, 2011) 
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in amplifying the risk of misattribution of moral patiency is also examined here. 
 
Section IV shifts to metaphysical and architectural analysis. It contrasts the functional 
complexity and organizational principles plausibly required for biological consciousness with the 
specific architecture of transformer-based AI. Specifically, it examines “thick integration,” 
recurrence, and “generative entrenchment” (from Cao, 2022; Wimsett, 1986; Godfrey-Smith, 
2023; and Seth, 2024). I aim to show that today’s AI systems are far from functional duplicates 
of humans, and that what it would take to equalize the case comparing humans with LLMs –– at 
the very least, establishing likeness of intrinsic and extrinsic properties at more than one level –– 
amounts to a re-engineering of our present-day models. 
 
Section V explores the teleological and scaled nature of AI development. I pit the evolutionary 
trajectory and ecological pressures that shaped biological sentience against the developmental 
trajectory of current AI. The former involves embodied survival, fitness, and interaction within 
complex environments (Perlman, 2004; Johnston, forthcoming); the latter is driven by 
optimizing specific computational objectives, data availability, and scaling laws (Vaswani et al., 
2017; Kaplan et al., 2020). I argue that the substantive disanalogies between evolutionary 
adaptation and computational optimization provide further grounds for skepticism about the 
emergence of consciousness in present and near-term AI models. 
 
Section VI undertakes a normative synthesis. It first integrates the conclusions from the 
epistemic, metaphysical, and teleological analyses (Sections III-V) to argue that the likelihood of 
false positives (oversubscription) vastly exceeds that of false negatives (undersubscription) for 
current transformer-based AI. I then discuss associated harms, arguing that the concrete, 
immediate, and wide-ranging potential damages of oversubscription warrant greater ethical 
priority than the currently speculative risks of undersubscription of moral status to AI (here, I 
bring back Long et al., 2024). The section culminates in the argument that pragmatic skepticism 
is the ethically mandated stance. 
 
Finally, Section VII provides concluding remarks, summarizing the core argument, 
acknowledging its limitations (particularly its focus on current architectures), and reiterating the 
call for continued analytical rigor in addressing the challenges posed by rapidly advancing 
artificial intelligence. The key takeaway is that a “humble and cautious” approach to AI ought to, 
rather than entertaining the prospect of machine consciousness per se, ensure the well-being of 
extant, genuinely morally significant beings in the face of an uncertain technological revolution. 
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SECTION II. SENTIENCE, FULL MORAL STATUS, AND FUNCTIONALISM 

Before directly assessing the possibility of consciousness in artificial intelligence, we must first 
establish the conceptual, ethical, and metaphysical framework undergirding the argument. Here, I 
clarify precisely what kind of consciousness is ethically relevant and outline the methodological 
assumptions under which the possibility of its artificial realization will be evaluated. 
 
Primarily motivating the ethical debate surrounding AI is the theoretical potential of these 
models to develop phenomenal consciousness, particularly in its valenced forms. Phenomenal 
consciousness refers to the subjective quality of experience –– the “what-it-is-like”-ness of being 
in a particular state (Nagel, 1974). While intelligence and complex behavior are features of 
advanced AI, it is the capacity for subjective experience, particularly suffering, pain, pleasure, or 
well-being –– states with intrinsic positive or negative value for the subject –– that typically 
grounds moral concern. Accordingly, this paper adopts a sentientist baseline for full moral status 
(FMS): the capacity for valenced, phenomenal consciousness is considered both necessary and 
sufficient for a being to matter morally for its own sake and have fundamental moral claims 
(Singer, 1993; Perry, 2024). I choose sentientism for its perceived robustness and impartiality 
compared to alternatives like species membership, rationality, or linguistic ability; it centers 
moral consideration on the capacity for subjective welfare, arguably the most fundamental basis 
for having interests that can be morally wronged (Jaworska & Tannenbaum, 2023). While other 
capacities might ground additional or different moral considerations, sentientism defines the 
threshold relevant to the core risks of under- or over-subscribing moral status discussed in 
Section I.5 
 
Identifying the capacity for valenced phenomenal consciousness as the grounds for FMS is a 
matter of choosing a threshold; more challenging is to determine how we can justifiably infer 
sentience in other beings, particularly those vastly different from ourselves. Before tackling the 
epistemic difficulties of such inferences, however, we should first inquire into the possible 
conditions under which such radically different systems, particularly modern AI models, could 
possess phenomenal consciousness at all. Addressing this basic notion of artificial consciousness 
requires adopting a working metaphysical stance on the relationship between the mind and the 
physical. My argument thus presupposes a broadly physicalist/functionalist relation between the 
mind and its physical substrate, insofar as any given mental state and its underlying, constituting, 
or perhaps identical functional state are necessarily coextensional. In other words, the mental 
exists in virtue of the relevant physical states on which it supervenes (in all possible worlds).6  
 

6 If physicalism is true, then it’s true necessarily, since any physical duplicate of the actual world is a duplicate 
simpliciter. See Stoljar, 2024, Section 2.1 (“Supervenience and Necessity Physicalism”) for more. 

5 See Long et al. (2024) for examinations of whether robust agency suffices for moral status; see Jaworska & 
Tannenbaum (2023) for a discussion of alternative claims to moral patiency short of sentience. Note also that it may 
be that not all who have full moral patiency have it of the absolute highest order on more granular analyses –– that 
might be reserved for a subset. See Timmer (2023) for a recent positive argument to this effect. 
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Functionalism further specifies that mental states are defined not by their intrinsic physical 
constitution, but by their causal or functional roles within a system –– what they do, their 
relations to inputs, outputs, and other internal states, and the appropriate organization of the 
physical in service of those functional-causal structures. Computational functionalism, the 
additional belief that functional states are fundamentally computations or calculations, underlies 
much of contemporary cognitive science and philosophy of mind. It allows for the in-principle 
possibility of non-biological or non-carbon consciousness through the thesis of multiple 
realizability: if mental states are defined by functional organization, then different physical 
systems (e.g., silicon-based computers) could potentially realize conscious states if they 
implement the correct functional architecture. It is this implication which provides the primary 
metaphysical opening for the possibility of genuine artificial consciousness and motivates much 
of the contemporary debate. 
 
Adopting computational functionalism as a methodological starting point does not, however, 
necessitate accepting that consciousness is easily realizable or substrate-independent in a trivial 
sense. As I shall argue in Section IV, the kind of functional organization required for sentience 
might be extremely specific and complex, potentially tied implicitly to biological constraints 
(call this “high-demand functionalism”). Furthermore, the functionalist approach lies within a 
broader landscape of alternative metaphysical views. Biological chauvinism, in its strong form, 
might reject multiple realizability outrightly, positing that consciousness is possible only in 
specific biological materials –– a view largely rejected here but whose weaker cousins, 
emphasizing biology’s role in shaping functional requisites, remain relevant (Block, 1980). Other 
views challenge physicalism itself: property dualism posits phenomenal properties as 
fundamental and non-physical, though perhaps lawfully linked to brain states (Chalmers, 1996); 
emergentism suggests consciousness arises as a novel, potentially irreducible property from 
physical complexity; and various forms of panpsychism attribute rudimentary consciousness 
more widely in nature.7 
 
This paper does not aim to resolve these deep metaphysical disputes. A functionalist lens allows 
focused inquiry into whether current AI systems meet even the plausible functional criteria for 
sentience derived from our best understanding of consciousness in the one domain where we 
know it exists: advanced biological organisms. Proceeding analysis will therefore assess 
transformer-based AI against demanding functionalist benchmarks informed by biology. A 
failure to meet these criteria would likely also constitute failure under plausible alternative 
views, which also generally require complex organization to produce integrated macro-level 
experience. The core technical question becomes: can AI systems instantiate the requisite 
functional organization, however metaphysically conceived, for valenced phenomenal 
consciousness? An attempted skeptical answer follows. 

7 Van Gulick (2025), Sections 7, 8, and 9 feature a fantastic account and overview of various mind-brain theories. 
Otherwise, see O’Connor (2021) for a discussion of emergentism, which features heavily in the life and cognitive 
sciences (as well as computer science and systems-level AI engineering). 
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SECTION III. THE EPISTEMIC BASELINE AND ITS DISRUPTION 

While Section II established the ethical significance of valenced phenomenal consciousness and 
the metaphysics allowing for its potential realization in artificial systems –– posing the core 
question of whether AI can instantiate the requisite functional organization –– evaluating such a 
possibility involves navigating complex evidential challenges. Assessing a system’s functional 
organization, especially regarding consciousness, ideally draws upon multiple sources: direct 
analysis of its internal architecture and mechanisms (akin to neuroscience or, for AI, 
interpretability methods) and interpretation of its behavior and outputs, including linguistic 
reports. However, our understanding of precisely how specific architectures give rise to 
consciousness remains incomplete, both in biology and AI; the ventures of neuroscience and AI 
interpretability, while advancing, are still nascent in providing definitive answers about 
subjective experience based purely on the examination of physical or causal structure. 
Consequently, impressive behavioral capabilities and seemingly relevant linguistic outputs often 
feature prominently, explicitly or implicitly, in arguments suggesting AI progress towards 
sentience. Thus, the epistemic reliability of such behavioral and testimonial evidence is 
paramount. If the primary channel of evidence is systematically undermined, as this section 
argues, then our ability to draw justified conclusions about the underlying metaphysical reality 
–– whether based on behavior or interpreted architectural features –– is compromised. Therefore, 
before weighing the architectural evidence for or against consciousness in modern AI models 
(Section IV), we must first scrutinize the validity of the epistemic methods and inferential 
practices commonly used to attribute minds, particularly as they apply, or fail to apply, to current 
AI. 
 
The traditional problem of other minds highlights the fundamental epistemic challenge of 
mind-attribution: we lack direct access to the subjective experience of any being other than 
ourselves (Avramides, 2023). Phenomenal consciousness is, in a deep sense, unmeasurable and 
unverifiable beyond the first-person (Jackson, 1982). On the surface, our standard practices for 
navigating this challenge, particularly when attributing minds to fellow humans, seem to rely 
principally on inferences drawn from the primary evidential sources of observed behavior and 
linguistic self-testimony. Consider Jones, who yelps, “Ow!” after stubbing his toe, or mutters, “I 
certainly feel alive today!” when stepping out into the bitter cold. We typically take his 
exclamation as strong evidence that he is sentient and experiencing the specific subjective states 
of pain or a feeling of coldness, drawing jointly upon behavioral observation (the yelp, the 
posture) and linguistic testimony (the utterance).  
 
Both evidential sources possess inherent limitations in these normal human cases. Jones could be 
merely acting, perhaps testing our reaction, or systematically deceiving us (though unlikely in 
such mundane cases). His self-report might misrepresent the intensity or quality of his feeling, or 
he might even be mistaken about his own state in some complex philosophical scenario. Despite 
these potential failures, we generally operate under the assumption that, for beings biologically 
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and socially like ourselves (such as Jones), behavior and testimony provide defeasible but 
pragmatically justified grounds for inferring underlying mental states.8 Justification for such an 
assumption rests heavily upon presuppositions of shared ‘kind’ status, causal correlations 
between internal states and external manifestations within that kind, and the relative rarity of 
abnormal scenarios (like encountering philosophical zombies or Jones being a perfect simulator) 
that would systematically invalidate these inferences in our ordinary environment. 
 
The inference to other human minds, while pragmatically robust, rests on complex and debated 
theoretical foundations. Philosophers and cognitive scientists have proposed various 
mechanisms: we might employ an implicit ‘theory of mind’ to predict and explain behavior 
(Gopnik & Wellman, 1992); perhaps we use simulation, projecting our own mental states onto 
others (Barlassina & Gordon, 2017); or it may involve more direct perception or interaction in 
specific contexts (Gallagher & Fiebich, 2019). Avramides (2023) notes the ongoing debate, 
including challenges from developmental psychology regarding the early onset of abilities like 
false-belief understanding (Onishi & Baillargeon, 2005), suggesting innate modular mechanisms 
might be involved (Leslie & Roth, 1993). Regardless of the precise cognitive architecture, these 
approaches leverage a deep background assumption of shared embodiment, developmental 
trajectory, social embedding, and fundamental biological similarity –– the ‘shared kind’ status 
just mentioned. It is this rich, multi-layered similarity that licenses the heuristic leap from 
observable behavior and testimony to the attribution of unobservable subjective states, even 
acknowledging the possibility of error or deception in specific instances. 
 
When linguistic testimony is unavailable, as in the case of nonhuman animals, attributing 
sentience requires modifying the approach. These inferences rely more heavily on identifying 
shared features and employing kind-based justifications, interpreting behavior within a 
comparative biological and evolutionary framework and looking for converging lines of evidence 
suggestive of conscious rather than merely unconscious processing (Birch et al., 2020). These 
include what Birch (2017) terms “credible indicators of sentience”: observable phenomena best 
explained by invoking subjective, particularly valenced, experience. Examples include flexible 
decision-making that weighs competing needs or risks (motivational trade-offs), suggesting a 
common evaluative currency beyond rigid stimulus-response, and behaviors indicative of 
experiencing pain or seeking relief, such as targeted avoidance of noxious stimuli or 
self-administration of analgesics. For instance, an octopus choosing to inhabit a less preferred, 
but pain-relieving, environment after a noxious injection provides strong evidence for a felt 
negative experience and a desire for its cessation (in fact, Crook’s 2021 study demonstrated just 
this). Such behavioral interpretations are bolstered by considerations of neurophysiological 
complexity (particularly, the presence of nervous systems) and evolutionary relatedness 

8 More specifically: abnormal cases like Jones lying or sleeping do not undermine the general epistemic value of 
testimony regarding sentience itself. Even if Jones's report “I am in pain” is false at time t (because he is lying or 
perhaps asleep and dreaming), the utterance normally still provides evidence that Jones is the kind of system capable 
of having such experiences and issuing such reports. The question is if LLMs are these kinds of systems at all. 
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(Godfrey-Smith, 2017), which provide grounds for analogical inference from the human case. 
 
I should note that challenges abound in these cases, too. Interpreting behavior accurately requires 
careful consideration of species-specific contexts and avoiding anthropomorphic projection 
(about which more soon). Furthermore, as evolutionary distance increases, particularly with 
invertebrates possessing vastly different nervous systems (Birch, 2022; Godfrey-Smith, 2017), 
analogical inferences from human neurophysiology become tenuous. Despite these hurdles, the 
entire enterprise remains grounded in shared biology –– common ancestry, conserved neural 
pathways, and analogous ecological pressures –– providing a defeasible yet common basis for 
inference. Even without testimony, justifiable attribution of sentience, and thus moral patiency, to 
some nonhuman animals rests on strong empirical and evolutionary grounds.9 
 
Modern LLMs disrupt both inferential baselines of testimony and behavior while failing to share 
in our kind. These models can generate linguistically coherent and contextually appropriate 
claims about consciousness, simulating the testimonial evidence we rely on in the human case. 
Concurrently, they can exhibit complex, seemingly goal-directed linguistic behaviors that mimic 
the kind of behavioral evidence used in animal cases. Yet all this occurs under conditions 
wherein the link between these outputs and genuine phenomenal states is, at best, undetermined 
–– and, at worst, demonstrably absent. The core operational principle of current 
transformer-based LLMs involves next-state prediction based on statistical patterns gleaned from 
vast datasets of human language, content, and interaction. Their ability to produce 
consciousness-indicating verbal behavior can therefore be explained parsimoniously by their 
capacity for sophisticated pattern-matching and sequence generation, sans needing to posit 
underlying subjective experience (Bender et al., 2021; Shanahan, 2023). (More about their 
architecture in the next section.) 
 
The disruptive potential of LLMs extends beyond simulating testimony to undermining the 
behavioral evidence channel relied upon for nonhuman animals. While LLMs lack physical 
bodies to perform actions in the world, they can generate compelling linguistic descriptions of 
complex, flexible, and goal-directed behaviors. They can produce text outlining intricate plans, 
articulate nuanced preferences among options, simulate sophisticated reasoning processes, or 
generate narratives expressing contextually appropriate emotional responses. Just as their 
testimony is produced through statistical pattern-matching on linguistic forms, these behavioral 
simulacra are also outputs optimized for sequence prediction based on vast datasets of human 
text describing, implicating, or alluding to such behaviors. There is no necessary connection 
between generating a textual description of avoiding harm and any underlying negatively 

9 Contrary to my eventual prescription for artificial sentience attribution, I follow Singer (1989; 1993) and Birch 
(2017) in erring on the side of moral caution regarding nonhuman animals. It is clearly wrong to burn a room to the 
ground for entertainment if there is a, say, 50% chance the room is filled with dogs, pigs, horses, or wildebeests. 
Animals that can suffer or experience agony (intense pain over time) are full moral patients; there is good reason to 
believe many animals count. 
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valenced state, nor between describing a complex decision and an underlying integrated 
evaluation process analogous to motivational trade-offs in animals. 
 
LLMs’ ability to “cheaply” produce conscious-seeming behavior and testimony creates a 
systematic decoupling between report and reality, presenting a novel epistemological challenge 
distinct from traditional skeptical worries about other minds. While human testimony, as 
previously noted, generally carries epistemic weight regarding the speaker’s capacity for 
sentience even when its specific content is inaccurate, the situation with LLMs is murkier. 
Reports about conscious states, easily generated by the model’s predictive mechanisms, may 
therefore carry no more evidential weight regarding actual subjectivity than their production of 
consciousness-denying text (Perez & Long, 2023). The very instability of these reports, highly 
sensitive to contingent factors like prompt engineering and parameter settings, undermines their 
claim to reflect stable, underlying mental states (Chalmers, 2023).10 It isn’t merely that these 
systems can generate seemingly false consciousness-claims –– but that the basal mechanisms by 
which models operate and generate such claims can be tweaked to produce contrary or opposite 
claims. Models’ conscious-seeming behavior and testimony is, then, vapid –– the propositional 
content of their outputs hold no evidential weight insofar as it should obtain over the system 
producing it and which it is supposed to describe. Whereas human reports generally maintain 
consistency reflective of an integrated self and draw upon genuine first-person experiences, 
LLMs seem to fail on both accounts. 
 
In an effort to ameliorate the resulting epistemic uncertainty about machine consciousness based 
on external cues, various proposals for behaviorist and testimony-based tests of AI consciousness 
have been proffered, most notably the Turing Test (Turing, 1950), the Artificial Consciousness 
Test (ACT; Schneider & Turner, 2017; Schneider 2019), and the Chip Test (Schneider, 2019). 
The Turing Test, assessing conversational indistinguishability from a human, primarily measures 
sophisticated intelligence or linguistic competence rather than sentience per se; while historically 
challenging, simulating such conversation is becoming increasingly feasible for LLMs, rendering 
the test insufficient as an indicator of consciousness (Chalmers, 2023). Schneider and Turner’s 
ACT attempts to circumvent the issues of cheap LLM testimony by requiring introspective 
reports about consciousness from an AI model completely isolated from data describing, 
suggesting, or alluding to subjective experience. However, as critics note (Udell & Schwitzgebel, 
2021; Vaidya & Krishnaswamy, 2024), effectively ‘boxing in’ an AI model from implicitly 
learning about consciousness concepts embedded within vast training data is likely highly 
impractical, if not impossible. (Roughly: in training these models, content is not cleanly 

10 Alongside different prompting, the probability distributions that are the outputs of LLMs can be changed 
drastically by tweaking the “temperature” parameter, which tracks how rigid and deterministic the responses are. 
The parameter is a constant multiplied by the logits (outputs of any given layer of neurons) during the SoftMax 
stage, wherein the outputs are probabilized. Higher values lead to more even distribution among less likely tokens in 
the output distributions, and so the responses are more “creative” and “novel.” See Agarwala et al. (2020) for further 
discussion. 
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separable from context.) Furthermore, the ACT still relies on testimony, which, as argued, is 
fundamentally unreliable in LLMs. Schneider’s Chip Test, inspired by gradual replacement 
thought experiments (Chalmers, 1995), asks whether consciousness persists as biological 
components are replaced by artificial ones. While conceptually interesting, its practical 
application relies ultimately on first-person reports or interpretations of behavior from the 
potentially modified subject, re-introducing the core epistemic challenges. LLMs are simply too 
adept at generating the appearance of consciousness-related behavior or testimony based on 
learned patterns, irrespective of genuine internal states, to be naïvely evaluated for consciousness 
from the outside. 
 
Compounding the verification problem arising from the nature of LLMs is our own cognitive 
susceptibility to misinterpreting their outputs. Humans exhibit robust psychological biases that 
impair objective assessment of potential machine mentality, including anthropocentrism, human 
exceptionalism, and anthropomorphism (Seth, 2024; Dennett, 1997). Anthropocentrism leads us 
to evaluate AI through the lens of human values and experience; human exceptionalism 
encourages us to equate characteristically human cognitive abilities, especially language, with 
consciousness itself (Seth’s “royal road” fallacy); and anthropomorphism drives us to project 
human-like mental states onto systems exhibiting complex or seemingly intentional behavior. 
Research on human social cognition (see Gelman, 2019) also suggests that complex heuristics 
are the brain’s primary reasoning mechanisms; our tendency towards generic generalizations (for 
instance, “Things that talk like us are like us”) may lead us to over-apply inferences valid for 
humans to AI systems whose underlying mechanisms differ profoundly (Leslie et al., 2011). 
LLMs, designed to excel at human language and interaction, are potent triggers for these biases. 
Their sophisticated linguistic fluency can elicit strong anthropomorphic responses, leaving us 
prone to inferring genuine understanding, intention, or feeling where there may only be complex 
pattern-matching. As Seth (2024) notes, such a tendency can be “cognitively impenetrable” — 
that is, persist even in the face of contrary evidence or explicit knowledge that we are interacting 
with a non-conscious system.11 The interaction of AI’s capacity for performative mimicry with 
our inherent cognitive biases creates an ‘epistemic trap,’ strongly predisposing us toward false 
positives. 
 
The preceding analysis reveals the epistemic impasse precipitated by the advent of sophisticated 
LLMs. Our established methods for attributing consciousness –– whether leveraging testimony 
and assumed similarity in the human case, or interpreting behavior through biological analogy 
for non-human animals –– falter when confronted with systems capable of generating persuasive 
linguistic mimicry decoupled from verifiable internal states. Standard empirical tests for 
consciousness prove inadequate against this capacity for simulation, while deep-seated human 
cognitive biases systematically skew interpretations. What results is an evidential environment 

11 See Segall et al. (1968) for a review of the quintessentially cognitively impenetrable Müller-Lyer illusion, and, 
interestingly, how results vary across cultures. 
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wherein performative outputs mask as authentic indicators of sentience, rendering judgments 
based on surface interactions highly unreliable. Consequently, the probability of mistakenly 
attributing consciousness where none exists appears elevated relative to the probability of failing 
to recognize genuine consciousness. Given the fundamental untrustworthiness of behavioral and 
testimonial evidence in this context, any rigorous assessment of potential AI sentience cannot 
endorse behaviorism about AI consciousness. Instead, inquiry must shift to the underlying 
structure and operational principles of these systems. And on a basic level: it must be true for my 
arguments that these models are not conscious. Directly engaging with the metaphysical and 
architectural properties of AI models and pitting them against the functional organization known 
to support consciousness in biological organisms is the task undertaken in the next section. 
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SECTION IV. THE METAPHYSICAL BASELINE AND AI DIVERGENCE 

Given the demonstrated unreliability of behavioral and testimonial evidence discussed in Section 
III, rigorous assessment of potential AI sentience must shift focus to the underlying metaphysical 
and architectural properties of these systems. This section undertakes that analysis, arguing that 
substantive divergences exist between the functional organization plausibly required for 
consciousness and the architecture implemented in current transformer-based AI models. 
Establishing the functional requisites for consciousness begins by examining the biological 
systems in which sentience is known to manifest. While computational functionalism, as 
discussed in Section II, allows for multiple realizability in principle, the kind of functional 
organization required for consciousness may be highly specific or demanding, informed by the 
intricate nature of biological cognition. Simply achieving behavioral equivalence or equal 
information processing capacity simpliciter is probably insufficient; fully implementing specific 
kinds of causally interconnected functional organization across multiple physical scales heeds the 
known complexity of the brain and nervous system (Butlin et al., 2023; Cao, 2022). Recent 
systematic analyses of consciousness in artificial systems, particularly Butlin et al.’s (2023) 
comprehensive review, enumerate various neuroscientific indicators putatively necessary for 
consciousness –– recurrent processing in input modules, global broadcast mechanisms, 
metacognitive monitoring systems, and integrated workspace architectures that enable 
cross-modal information sharing12 –– but their theoretical edifice rests on the explication and 
truth of computational functionalism. They adopt the assumption of its (underspecified) truth 
primarily for pragmatic reasons, noting that underspecified functionalism makes it “relatively 
straightforward to draw inferences from neuroscientific theories of consciousness to claims about 
AI” (p. 11). 
 
Relying on such ‘underspecified’ functionalism, as Butlin and colleagues acknowledge, risks 
glossing over necessary complexities. The principle of multiple realizability holds that a mental 
state can be realized by different physical systems only if those systems implement the same 
relevant functional profile. A natural question is then, “At what level of description must this 
profile match?” Merely replicating high-level input-output behavior (e.g., generating human-like 
text) would be insufficient if consciousness depends on more specific internal processing 
dynamics or organizational structures operating at finer functional grains (Chalmers, 1996). A 
“high-demand” functionalism, sensitive to the intricacies revealed by neuroscience, might 
require isomorphism not just at the level of gross behavior, but also concerning internal state 
transitions, information integration patterns, and perhaps even dynamic interactions with 
metabolic or physiological states –– functional aspects potentially obscured when focusing solely 
on abstract computational roles. 
 
In light thereof, Butlin’s methodological choice potentially obscures deeper questions about 

12 These indicators are derived from Global Workspace Theory (Baars, 1988; Dehaene et al., 1998, 2003), 
Higher-Order Theories  (Rosenthal, 2005; Brown et al., 2019), and Recurrent Processing Theory (Lamme, 2006). 
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whether the kind of functional organization required for consciousness can be instantiated 
through purely computational mechanisms. As Cao (2022) argues, relevant functional properties 
may be inextricably bound to their biological implementation through ‘generative entrenchment’ 
(originally from Wimsatt, 1986). On this view, core functional properties arising through 
evolutionary development become so deeply integrated with and dependent on the specific 
physical substrate and multi-level organization thereof that they resist abstraction into 
substrate-neutral computational descriptions. Godfrey-Smith’s (2023) and Seth’s (2024) analyses 
further develop this notion through some notion of ‘thick integration’ in biological cognition: the 
causal interdependence between metabolic, neurochemical, and information-processing functions 
across multiple physical and temporal scales in the brain. In biological systems, the state of one 
process, like metabolic energy availability via ATP, directly influences and is influenced by 
others, like neuronal firing thresholds, neurotransmitter release, and sleep regulation via 
adenosine degradation (Cao, 2022). Similarly, neuromodulators like nitric oxide exert diffuse 
influence through multiple pathways simultaneously (Cao, 2022). It is likely that at least some of 
these processes or features of the brain are necessary for phenomenal consciousness, or else that 
some of the processes that subserve mental life are ‘bound up’ in the entrenched properties of the 
central nervous system such that they cannot be realized through abstract, classical computation 
alone. 
 
Thick integration extends beyond individual molecules like ATP or nitric oxide. Consider the 
intricate ecosystem of the brain at large: glial cells, once considered auxiliary, actively shape 
synaptic plasticity, modulate neuronal communication, and participate in metabolic coupling 
with neurons (Fields, 2009). The sheer diversity of neurotransmitter receptor subtypes allows for 
highly nuanced and state-dependent information processing, far removed from simple digital 
logic gates (even at great scale). Furthermore, tight neurovascular coupling ensures that local 
neural activity dynamically influences blood flow and energy supply, creating feedback loops 
wherein physiological state and information processing are mutually dependent (Logothetis, 
2008). The deep entanglement of function with the specific, evolved properties of the biological 
substrate –– its chemical sensitivity, metabolic needs, and physical structure –– exemplifies 
generative entrenchment. Self-professed pedants ought to wonder whether functions essential for 
consciousness can be cleanly lifted from this rich biological matrix and replicated solely through 
the manipulation of abstract numerical values in silicon. 
 
Consider now the ‘thin’ integration characteristic of contemporary digital computation, 
particularly the architectures underlying LLMs. Here, interactions between fundamental 
processing units (transistors implementing logic gates, or abstracted as nodes in a neural 
network) are governed primarily by mathematically defined rules and the propagation of 
electrical signals representing logical states or numerical values. While the scale of interaction 
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among ‘neurons’ in LLMs is vast and complex at both the software and hardware levels,13 the 
interactions seem to lack the rich physical and chemical causality of biology. A change in a given 
transistor’s state primarily affects others through electrical signals according to a predefined 
circuit design; it lacks direct, simultaneous metabolic or chemical coupling with neighboring 
components in the manner of neurons within tissue. The signals themselves largely represent 
abstract numerical values undergoing mathematical transformations (viz., vector operations and 
non-linear function applications), rather than embodying the complex interplay of 
physical-chemical-electrical processes found in brains. It is precisely this mode of 
mathematically defined, thinly integrated processing that is instantiated, at massive scale, in the 
transformer architectures dominant in current AI. 
 
Transformers are, fundamentally, data-memorizing algorithms trained to output reasonable 
probability distributions over its vocabulary for the next state of a given sequence of information 
given all preceding information. These models (a Google Brain breakthrough; see Vaswani et al., 
2017) operate on sequences of discrete tokens (representing words, sub-words, or other data 
modalities), which are first loaded into high-dimensional numerical vector-spaces known as 
embeddings. The core of the architecture consists of multiple stacked layers of processing, each 
typically containing two main sub-components: a “self-attention” mechanism and position-wise 
feed-forward networks. The self-attention mechanism allows the model to weigh the importance 
of different tokens within the input sequence when computing the representation for each token, 
enabling the capture of long-range dependencies, or context. It does so by calculating relevance 
scores (attention weights) between pairs of token representations and producing a weighted sum 
of these values. Following the attention mechanism, feed-forward networks further process each 
token’s representation independently of one another. 
 
Computationally, these operations rely heavily on large-scale matrix multiplications and vector 
additions, executed across the model’s layers. These computations occur at both the software 
level (the abstract description of the neural network) and the hardware level (the physical 
transistor circuits implementing these calculations), typically leveraging the parallel processing 
capabilities of Graphical Processing Units (GPUs) for efficiency.14 Non-linear activation 
functions, such as the Rectified Linear Unit (ReLU), are applied after certain transformations 
within each layer, preventing the entire network from collapsing into a simple linear 
transformation and enabling the model to learn complex, non-linear patterns from the training 
data. The model's “vocabulary” consists of the set of all possible tokens it can process or 

14 Graphical processing units were constructed to essentially parallelize matrix multiplication, which undergirds 
modern computer graphics. Only GPUs (or more modern architectures of this sort) can service the massive 
calculative demands of training deep learning models, which also feature matrix multiplication as the primary 
computational mechanism (Dally & Keckler, 2021). 

13 By “at the hardware level” I mean to refer to the specific transistor circuits engaged in computing the weights of 
neural networks –– in essence, the physical states that realize the model’s functional states at the software and 
informational level. Of course, there is much to discuss here about the relation of hardware, software, and wetware; 
see Piccinini (2021) for a comprehensive discussion of how physical systems implement computational processes. 
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generate.15 
 
Transformers learn and operate in two distinct phrases: pre-training and inference. During 
training, the model’s vast number of parameters (the weights within the matrices defining the 
network’s connections) are adjusted iteratively using backpropagation algorithms, which employ 
partial derivatives to track how each connection affects the final probability distribution outcome 
(Rumelhart et al., 1986). Typically, the model is exposed to massive datasets and set to modify 
its weights to minimize a loss function, often related to accurately predicting the next token in a 
sequence given the preceding context (Kaplan et al., 2020). As mentioned, training happens 
largely in parallel across data instances and hardware units, optimizing the system for statistical 
pattern-matching en masse. During inference, however, the model’s weights are fixed. 
Generating output involves feeding an initial sequence of tokens into the network and 
performing a feed-forward computation: the input cascades through the layers, producing a 
probability distribution over the entire vocabulary for the next token. A token is then sampled 
from this distribution (modulated by parameters like temperature!) and appended to the 
sequence, which is then fed back into the model to generate the subsequent token in an 
auto-regressive manner. 
 
The lack of pervasive, nested feedback loops during inference in transformers marks a 
particularly salient divergence from biological systems. Recurrent processing, wherein outputs of 
neuronal populations ‘loop back’ to influence their own or others’ subsequent activity, is a 
ubiquitous feature of the brain and central to leading neuroscientific theories of consciousness 
(Seth, 2024). Global Workspace Theory (GWT), for instance, posits that conscious awareness 
arises when information is broadcast via recurrent connections to a wide range of specialist 
processors (Baars, 1988; Dehaene et al., 1998). Recurrent Processing Theory (RPT) links 
sustained recurrent activity within sensory hierarchies to phenomenal experience, distinguishing 
it from rapid, unconscious feed-forward processing (Lamme, 2006). Recurrence is also thought 
to be necessary for temporal integration, maintaining representations over time, binding disparate 
features into unified percepts, and enabling the flexible, context-sensitive processing 
characteristic of conscious thought (see Singer, 2021; Seijdel et al., 2021; and Aukstulewicz et 
al., 2012 for a discussion of just this). While transformer architectures utilize recurrence during 
training and have mechanisms like self-attention to model dependencies across sequences, their 
inference process for generating output remains a feed-forward cascade, lacking the dynamic, 
temporally deep, re-entrant signaling strongly implicated in biological consciousness (Chalmers, 
2023). 
 
Significant functional divergences likely relevant to consciousness thus exist between 

15 More specifically, models’ vocabulary consists of all tokens (words, sub-word parts) into which the data have 
been segmented, plus special tokens like end-of-sequence markers. ReLU (Rectified Linear Unit) simply replaces all 
negative input values with 0 while leaving positive values unchanged, serving as a common non-linear activation 
function (Brownlee, 2019). 
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transformers and the established biological baseline. The predominantly feed-forward nature of 
inference is disparate from the ubiquitous recurrence essential for temporal integration and 
sustained neural activity patterns implicated in conscious processing (Lamme, 2006). The 
integration of information via self-attention, while sophisticated for modeling sequential 
dependencies, remains a form of thin mathematical processing based on learned statistical 
correlations, distinct from the thick, multi-level causal integration involving metabolic, chemical, 
and electrical processes in biology. Furthermore, the disembodied nature of current LLMs 
contrasts the embodied, environmentally situated nature of biological cognition, a factor many 
theorists consider necessary for consciousness (Shapiro, 2019; Clark, 1997). Operating solely on 
vast datasets of text, these models might lack the direct sensory and motor interfaces that ground 
biological intelligence in the physical world. The classic symbol grounding problem thus arises 
(Harnad, 1990): how can the abstract symbols (tokens, embeddings) manipulated by an LLM 
acquire genuine meaning, let alone phenomenal quality, without being linked to perceptual inputs 
and bodily actions? While Pavlick (2023) argues that the rich correlations within linguistic data 
provide a form of grounding sufficient for semantic competence, and Chalmers (2023) notes that 
this might suffice for some cognitive functions, it seems unlikely to suffice for fully-fledged 
phenomenal experience, which is intrinsically perspectival and qualitative; it arguably arises 
from an agent’s active engagement with its surroundings (O’Regan & Noë, 2001). Embodied 
interaction is likely important for developing robust world models and self-models grounded in 
the distinction between agent and environment –– prerequisites for the kind of unified agency 
and subjective viewpoint often associated with consciousness (Metzinger, 2003; Chalmers, 
2023). Such disparities –– in integration, recurrence, and embodiment –– suggest transformers 
implement a fundamentally different functional strategy compared to biological systems, one 
optimized purely for pattern completion and sequence prediction rather than replicating the 
integrated, embodied functionality associated with biological consciousness. 
 
Collectively, the architectural limitations of transformers also seem to undermine the 
straightforward application of multiple realizability to current or near-term artificial systems. 
While multiple realizability posits that the same function could be realized by different physical 
substrates, the analysis suggests that current LLMs and conscious biological systems are, at the 
relevant organizational levels, implementing vastly different high-level functions (even though 
humans, too, predict the world on state-by-state bases). Transformers execute highly 
sophisticated functions related to statistical pattern generalization and sequence prediction from 
vast data corpora; biological consciousness appears functionally tied to the integrated control of 
an embodied agent navigating a complex physical and social world, driven by intrinsic needs and 
goals.16 

16 Scrupulous readers might note that the matter of evaluating LLMs as functional duplicates of us is the proper way 
to assess the truth of functionalism –– at the very least, we should refer to systems who share some important 
functional features of cognition found in the nervous system. I will argue in the next section that it is precisely the 
fact that LLMs have so many shortcomings in this way that renders the likelihood of their being conscious low, even 
on the supposition of the truth of a computational functionalism which could be better specified. 
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My appeal does not rest on an a priori commitment to biological chauvinism but emerges from 
functional analysis of the mismatch between the operational principles of current AI and those of 
known conscious systems. It suggests that realizing consciousness may require architectures that 
incorporate not just computational power but also principles related to embodiment, intrinsic 
motivation, developmental learning, and the thick integration characteristic of biological systems 
–– features largely absent in current LLMs (Shapiro, 2019; Asada et al., 2009; Hamburg et al., 
2024). Consequently, this architectural shortfall provides substantial metaphysical grounds, 
reinforcing the epistemic difficulties detailed in Section III, for maintaining a skeptical stance 
regarding the presence of sentience in these specific artificial systems. Evaluating the final 
dimension of divergence — the developmental trajectories and teleological pressures shaping 
these systems — is the task of the next section. 
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SECTION V. TELEOLOGICAL AND SCALED DIVERGENCE 
The preceding sections established significant epistemic barriers to verifying consciousness in 
current AI (Section III) and identified serious architectural divergences between transformer 
models and the complex functional organization plausibly required for biological sentience 
(Section IV). This section introduces a third line of argument reinforcing skepticism, in which I 
take note of the disparate developmental trajectories and teleological pressures shaping these 
systems. I contrast the evolutionary history and ecologically embedded goals driving biological 
sentience with the optimization objectives and scaling paradigms governing contemporary AI 
development, arguing that relevant disanalogies further undermine the prospect of the emergence 
of consciousness in transformer-based AI models. 
 
The emergence of phenomenal consciousness in biological systems, while still imperfectly 
understood, is widely considered a product of evolution by natural selection, shaped by the 
demands of survival and reproduction in complex, dynamic environments (Godfrey-Smith, 2017; 
Perlman, 2004). On this view, sentience is not merely an epiphenomenon of computational 
complexity but likely a specific adaptation (or suite of adaptations) conferring fitness advantages 
upon those who have it. Plausible functions include integrating disparate streams of sensory 
information for coherent action guidance, navigating unpredictable and threat-laden 
surroundings, mediating flexible goal-directed behavior, enabling sophisticated social 
coordination, and arbitrating resource-bounded decisions under pressures related to metabolic 
needs, predator avoidance, mating, and other existentially significant concerns (Johnston, 
forthcoming; Godfrey-Smith, 2017). Biological cognition, and potentially consciousness itself, 
appears oriented towards the overarching ‘goal’ of inclusive fitness, pursued through a multitude 
of embodied interactions within a rich ecological niche. The functional architecture supporting 
consciousness (discussed in Section IV) co-evolved with and under these pressures.17 
 
The evolutionary pressures shaping biological sentience were multifaceted and deeply embodied. 
Survival and reproduction demanded solutions to a near-constant stream of concurrent, often 
conflicting problems: acquiring energy, avoiding becoming energy for others, finding mates, 
navigating complex social hierarchies, and adapting to unpredictable environmental changes. 
Such a complex optimization landscape likely favored the development of integrated control 
systems capable of representing the world, evaluating potential outcomes based on intrinsic 
motivations (e.g., hunger, thirst, fear, lust) tied directly to physiological states, and selecting 

17 Note that I do not wish to attribute ‘purpose’ to nature or evolution in an intentional or pre-ordained sense, nor 
invoke ‘entelechy’ as some distinct vital force guiding development. The use of ‘goal’ here, specifically referring to 
inclusive fitness, follows standard evolutionary biology practice (e.g., Godfrey-Smith, 2017) as a way to describe 
the net directional pressures and apparent adaptedness resulting from natural selection acting on random variation 
over vast timescales. It serves as a useful abstraction for understanding the complex interplay of factors –– the 
various amorphous circumstances, situations, and causal forces –– that collectively shape organisms and their traits, 
including cognitive architectures and potentially consciousness, towards patterns that enhance survival and 
reproduction within specific ecological contexts. See Zeigler, 2008 for further discussion on the nuanced question of 
purpose in biology. 
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actions accordingly (Damasio, 1994). Consciousness, particularly its affective dimension, may 
have emerged as a mechanism for integrating these diverse inputs, providing a ‘common 
currency’ for decision-making and motivating adaptive behavior (Cabanac, 1992). While the 
precise evolutionary trajectory remains debated, the takeaway is that biological cognition 
evolved under pressure to manage embodied existence within a dynamic physical and social 
world, a stark contrast to the abstract optimization target of current AI.18 
 
The developmental trajectory of current AI, particularly transformer-based LLMs, follows a 
starkly different logic, driven by engineering objectives and computational scaling rather than 
biological evolution. The dominant machine learning paradigm relies on observing empirical 
“scaling laws,” whereby key performance metrics (like predictive accuracy on benchmarks or 
minimizing the loss function during training) improve predictably as a function of model size, 
dataset size, and computational resources invested (Kaplan et al., 2020; Villalobos, 2023). 
Development proceeds by increasing these quantitative factors, frequently by multiple orders of 
magnitude, within the established architectural framework. The primary goal guiding this 
process is the optimization of a specific, mathematically defined objective function –– most 
commonly, minimizing cross-entropy loss, which corresponds to maximizing the accuracy of 
predicting the next token in a sequence given the prior context. While increasingly sophisticated 
training regimes (like reinforcement learning from human feedback, or RLHF; see Ouyang et al., 
2022; or reinforcement learning more generally) are used to align model outputs with desired 
conversational behaviors, the underlying optimization remains focused on statistical pattern 
matching and generation based on the training data distribution. 
 
Fundamentally, such a disparity in origins and objectives –– maximizing inclusive fitness (or, the 
genetic preponderance in one’s posterity) in an embodied ecological context versus optimizing 
predictive accuracy on vast datasets –– plausibly precludes the realization of comparable 
functional outcomes, including consciousness. The argument is not simply that the goals are 
different, but that the teleology shapes the resulting system architecture and its large-scale 
dynamic properties (Godfrey-Smith, 2023). A system optimized narrowly for next-token 
prediction, even at massive scale, does not thereby instantiate the complex, open-ended cognitive 
coordination associated with biological phenomenology (Perlman, 2004; Johnston, forthcoming). 
The singular pursuit of minimizing predictive loss, even if requiring sophisticated 
world-modeling capabilities as instrumental subgoals (see Pavlick 2023), fails to replicate the 
flexible integration of heterogeneous, survival-based needs that plausibly drives subjective unity 
and valenced experience in metabolizing organisms (Whyte et al., 2024). 
 
Acknowledging that sophisticated world-modeling in particular might be an instrumental subgoal 

18 This is not a view without contention. Gutfreund (2018) reviews and expresses skepticism about the role of 
consciousness in maximizing inclusive fitness and its lack of a phylogenetic, mechanistic explanation. I am not sure 
if the force of my argument hinges on consciousness having so clear a purpose; if it were an evolutionary spandrel 
(implausible but not impossible), it emerged under certain conditions not shared by our AI compatriots. 
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for achieving high performance on next-token prediction (Pavlick, 2023) does not mend the 
teleological mismatch. The nature of the world being modeled and the purpose of that model 
differ. Biological organisms must build models integrated with multi-modal sensory input, 
capable of predicting physical dynamics, understanding causal relationships, navigating spatial 
environments, inferring the intentions of other agents, and –– most importantly –– linking these 
representations to their own bodily states, potential actions, and survival-critical valuations. The 
world model serves in some sense as a representation of the organism’s embodied goals. An 
LLM, however, primarily models the statistical structure of language, inferring correlations and 
patterns that reflect aspects of the world described in the text (Li et al., 2024; Bubeck et al., 
2024). While increasingly sophisticated, this model remains tethered to the optimization 
objective of minimizing predictive loss on symbolic sequences, lacking the direct grounding in 
perception, action, and intrinsic biological imperatives that shapes the content and function of 
biological world-modeling and arguably underpins subjective experience. 
 
Allow me to shed light on the hegemonic counterargument. One might think that minimizing 
prediction error over sufficiently diverse and complex corpora of data is itself a highly 
multi-factorial task that could indirectly force the development of consciousness-like properties 
as optimal prediction strategies.19 After all, much context and understanding is required to 
predict the final token of, say, a mystery novel whose last sentence is, “and the murderer was…”. 
And in theory, one could model the entire functioning of biological organisms as maximizing a 
single quantity: roughly, expected number of offspring. In order to maximize this single quantity 
–– usually encompassed on a broader scale, as mentioned, by the consideration of maximum 
inclusive fitness –– phenomenality was developed and implicated. Why won’t something similar 
happen in LLMs as they learn to predict the world piece by piece, particularly as the upper bound 
of their computational capacities rapidly increases? 
 
It is a compelling intuition. A similar belief based on consistent empirical validation –– that 
models will continually get smarter or more cognitively capable with scale –– has been sufficient 
to motivate some of the largest capital expenditures in technological history (Nathan et al., 
2024). I endorse the basic scaling hypothesis, meaning I believe it is likely that the trends of 
models predictably, linearly improving with exponential increases in compute will continue for 
at least a few more years; and that, as harder benchmarks are created, models will develop 
greater capabilities to solve those problems. But, as argued in Section IV, the emergence of the 
specific property of (or set of properties that characterize) sentience likely depends on the 
instantiation of an equally specific kind of functional architecture characterized by features like 

19 The recent success of reinforcement learning in ‘thinking models’ like ChatGPT’s o1 and Google’s DeepSeek-R1 
further suggests that, given enough time and compute, models will ‘figure out’ how to solve just about any subgoal 
in service of the ultimate goal. As described in Zelikman et al. (2024), these models leverage “test-time compute” 
methods wherein the model is trained to reason through multiple steps before generating a response. They can thus 
tackle increasingly complex problems by breaking them down into manageable components –– or something of the 
sort. 
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thick integration and recurrence. There is no longer reason to believe that biological systems are 
the only kinds of systems that can develop advanced cognitive capacities and predict the world 
reliably; as such, there is no reason to believe that sentience, or the machinery that underwrites it, 
is necessary to accomplish these tasks.20 This is perhaps the most potent empirical takeaway 
from the modern AI boom –– that fancy neural networks, properly trained, are sufficient for 
some advanced degree of functional intelligence. Unlike Searle, who had no epistemic access to 
such powerful evidence, we should factor the relative success of transformers heavily into our 
evaluations of potential sentience in our manufactured systems. It is too quick to suppose that our 
AI models, based on their human-like capabilities, are on a similar trajectory to developing 
phenomenal consciousness. That remains to be substantiated. 
 
In fact, the belief that continued scaling of computational resources within the transformer 
paradigm will inevitably lead to consciousness rests on a hopeful interpretation of emergence and 
scaling laws. While scaling laws (Kaplan et al., 2020) demonstrate predictable, quantitative 
improvements in performance on specific benchmarks as models grow larger (a form of weak 
emergence), they offer no theoretical guarantee of a qualitative phase transition to phenomenal 
consciousness (strong emergence). Extrapolating current performance trends to predict the 
spontaneous arrival of subjectivity commits a potential fallacy of composition: optimizing the 
parts for pattern-matching does not ensure the emergence of a property like consciousness in the 
whole, especially if that property depends on different organizational principles (like the thick 
integration and recurrence discussed in Section IV) that are not incentivized by the current 
optimization process. Just as scaling the muscle size and training of baseball players predictably 
improves throwing distance without causing them to spontaneously achieve flight, scaling 
transformers improves their predictive capabilities without guaranteeing the emergence of 
sentience. Claims of emergent abilities in LLMs are themselves subject to debate, potentially 
reflecting evaluation methodologies rather than genuine qualitative shifts (Schaeffer et al., 2023). 
 
The counterargument that sufficient scale will eventually beget consciousness also seems to 
gloss over the relation among a given system’s teleology, architecture, and properties. 
Optimization teleologies do not directly determine system properties; rather, they shape the 
architecture developed to pursue that goal, and the architecture in turn determines the system’s 
functional capacities. For sentience to emerge, the network of probabilistic numerical chains 
constituting the LLM’s functioning would need to give rise to it — a prospect rendered doubtful 
by the architectural analysis in Section IV. To reiterate: while scaling clearly yields more capable 
AI, there is no established law or strong theoretical reason to believe it will, on its own, bridge 
the metaphysical and architectural gaps to consciousness within transformer-like systems.21  

21 By “bridging the gap,” I don’t intend to say anything beyond ‘instantiate the necessary and sufficient properties of 
consciousness (in the manner we know biological systems to).’ Of course, as mentioned, some think that a form of 

20 Of course, there exist some cognitive phenomena for which sentience is necessary: consider suffering, having an 
experience of red, or any state which highlights the experiential aspect of an event and not its functional profile 
(inputs; processing; outputs). 
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Noting teleological divergences between biological and nonbiological systems provides some 
explanation for the architectural mismatches detailed in Section IV. The complex, existential 
pressures of biological evolution –– the need for adaptable, embodied agents to survive and 
reproduce in a dynamic, threat-laden environment –– plausibly drove the selection of 
architectures featuring thick integration (to tightly couple sensing, metabolism, and action), 
pervasive recurrence (for temporal processing, prediction, and integrated awareness), and tight 
embodiment (for grounding representations and enabling agency). These features are functional 
solutions to the problems posed by biological existence. In contrast, the engineering objective of 
maximizing predictive accuracy on vast text datasets led to the transformer architecture, a 
powerful solution for sequence modeling and pattern extraction. Transformers excel at their 
designed task of next-state precisely because their architecture (feed-forward inference, 
self-attention, massive parameter counts) is well-suited to it. They lack biological-type features 
because those features were not necessary –– or might have been counterproductive, or simply 
cannot arise in silicon wafers –– for optimizing the specific, narrow goal of next-token 
prediction. Teleology shapes architecture, which in turn determines the system’s properties; the 
distinct teleologies guiding biological evolution and current AI development have thus yielded 
systems with fundamentally different architectures and, consequently, likely different core 
properties. This includes the presence or absence of consciousness. It is very likely that future 
benchmarks can be saturated without undergoing –– or having to undergo –– the kind of specific 
form of architectural development seen in sentient biological creatures. Achieving artificial 
consciousness likely requires more radical shifts in architecture and design principles, perhaps 
towards paradigms explicitly incorporating embodiment, developmental learning, or active 
inference, rather than merely building larger versions of current models (Shapiro, 2019; Asada et 
al., 2009; Hamburg et al., 2024; Jacquey et al., 2019). 
 
In conclusion, the teleological and developmental disanalogies between biological evolution and 
current AI scaling paradigms provide a third reason to doubt the present or near-term possibility 
of transformer consciousness. The pressures and objectives shaping AI development are 
fundamentally different from those that shaped biological sentience, dictating distinct 
architectures and functional profiles. Relying on computational scaling within current 
architectures to spontaneously generate consciousness appears overly optimistic and neglects the 
likely conditions of embodiment, intrinsic motivation, and evolutionary history in shaping those 
features. 
 

 

non-physicalism is required to explain or account for consciousness even in biological systems. I mean to refer only 
to the relative uncertainty of engineering artificial consciousness that achieves the same phenomenal properties as do 
some biological systems, regardless of the best explanation of or metaphysical account of the latter. 
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SECTION VI. NORMATIVE SYNTHESIS 

I have so far attempted to establish three lines of argument challenging the attribution of 
consciousness to current and near-term transformer-based AI systems. Section III detailed the 
epistemic impasse: the capacity of LLMs for sophisticated linguistic mimicry undermines 
traditional methods of consciousness attribution based on testimony and behavior, while human 
cognitive biases predispose us toward misinterpretation. In the context of models like ChatGPT, 
judgments based on surface interactions are highly unreliable. Section IV presented the 
metaphysical and architectural divergence of transformers, arguing that they lack the specific, 
complex, and deeply integrated functional organization plausibly required for phenomenal 
consciousness. Section V highlighted transformers’ teleological and scaled divergence: the 
optimization objectives and scaling-based development of AI is likely too narrow and too reliant 
on limited architectures to give way to consciousness. Sentience is unlikely to emerge as a 
byproduct of minimizing loss over many series of next-state predictive computations. 
 
Such findings compel a specific conclusion regarding the relative probabilities of attribution 
errors. Given the demonstrated unreliability of positive evidence (Section III) combined with the 
substantive architectural and teleological reasons for doubting the presence of the necessary 
underlying properties (Sections IV and V), the likelihood that current transformer-based AI 
systems are not conscious, will not soon become conscious, and yet appear conscious, seems 
substantially higher than the likelihood that they are conscious but fail to be recognized as such. 
In other terms, the probability of a false positive assessment (falsely ascribing moral status) 
appears vastly greater than the probability of a false negative assessment (failing to ascribe moral 
status when necessary) for these specific systems at this time. 
 
I would like to further the normative claims of this section by answering directly to Long and 
colleagues’ (2024) prescription of “caution and humility.” They claim that there is a “realistic, 
non-negligible possibility that (consciousness suffices for moral patienthood, and) there are 
computational features –– like a global workspace, higher-order representations, or an attention 
schema –– that both suffice for consciousness and will exist in some near-future AI systems” (p. 
4). As such, there is a risk of morally significant AI being developed in the near future; and we 
must take it seriously. In fact, they claim, “it is an open question which kind of risk will be more 
likely for particular kinds of AI systems, including seemingly conscious and charismatic systems 
like robots and chatbots” (p. 9).  
 
Aside from the lattermost statement seeming clearly false (about which more soon), their 
formulation implicitly endorses a strong version of the scaling hypothesis (critiqued in Section 
V), assumes the uncomplicated truth not only of computational functionalism but also of 
specific, highly contested neuroscientific theories of consciousness, and assumes that 
architectures like transformers will be able to implement or simulate these potentially necessary 
features with sufficient fidelity to actually instantiate consciousness, rather than merely mimic 
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associated behaviors (objected to in Section IV). Furthermore, their position assumes that the 
current risks of oversubscription are negligible or at least counterbalanced by the future risk of 
undersubscription. This must be so because the conditions for oversubscription harms have 
already been met: there exists a profusion of powerful, seemingly intelligent, yet likely 
nonconscious models interacting widely with human populations. Modern, enormous 
transformers are systems whose performative capabilities readily exploit human psychological 
biases (as argued in Section III), creating precisely the environment in which widespread, 
erroneous attribution of sentience is most likely. To downplay the extent risk of treating mere 
algorithms as fully feeling creatures while emphasizing the speculative risk of near-future 
undersubscription requires minimizing the impact or probability of these present-day dynamics. 
 
While Long and colleagues are right to consider future scenarios, ethical action must be 
grounded in present realities and probabilities. The risk of undersubscription harm is currently 
hypothetical; it depends entirely on future technological developments actually succeeding in 
creating sentient AI and on our subsequent failure to recognize it. The arguments presented in 
Sections IV and V cast doubt on the near-term likelihood of the first condition being met by 
current paradigms. Conversely, the risk of oversubscription harm is actual and present. As 
discussed in Section III, the conditions of harm –– convincingly anthropomorphic AI interacting 
widely with cognitively biased humans –– are already fulfilled. Therefore, a truly cautious 
approach, sensitive to evidence, must prioritize addressing the demonstrable and currently 
unfolding risks of oversubscription before focusing resources and ethical bandwidth on the 
speculative, future-contingent risks of undersubscription, particularly when the basis for that 
speculation (the strong scaling hypothesis) might be flawed. 
 
Furthermore, while it is true that future developments could thrust humanity into a more 
symmetrical risk profile –– and so only the passage of time is sufficient to determine the ideal 
split of focus between the harm-categories –– Long and colleagues professing uncertainty about 
the current risk profile appears inconsistent with the specific evidence regarding current 
transformer-based models. The convergence of arguments from epistemic vapidity, architectural 
divergence, and teleological misalignment strongly suggests that the conditions under which 
genuine AI consciousness emerges –– distinct from the conditions under which oversubscription 
harms obtain, which involve only the appearance of consciousness –– are themselves unlikely in 
current and near-term systems. A genuine application of “caution and humility” should thus 
acknowledge the specific, evidence-based risk profile for current technology (more soon). 
Caution demands addressing the clear and present danger of oversubscription fueled by 
unreliable mimicry and cognitive biases; humility requires recognizing the profound architectural 
and functional differences between current AI and biological consciousness, rather than 
believing that a system having various under-specified properties guarantees equivalent 
implementation or subjective realization across vastly different substrates. Consequently, when 
evaluating the expected harms –– the likelihood of each of the two categories of harm multiplied 
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by their magnitude of harm — the extremely low probability of transformer consciousness 
diminishes the expected harm of undersubscription for these systems, even granting the high 
severity of oversubscription harms. Conversely, the significantly higher probability of humans 
mistaking machines for genuine moral patients, combined with the concrete and substantial 
harms associated with oversubscription, results in high expected harm on this side of the coin. 
 
Speaking of which –– what exactly are the risks of taking inert simulations to be morally 
significant? They are concrete, diverse, and impact known moral patients. First, there is the risk 
of resource misallocation, wherein diverting limited ethical attention, societal concern, financial 
resources, and computational power toward the perceived needs or rights of non-sentient AI 
detracts from addressing the demonstrable suffering and needs of existing human and non-human 
animal populations who undoubtedly possess moral status (Bryson, 2010; Birhane & van Dijk, 
2020). Second, widespread oversubscription fosters moral confusion and conceptual inflation, 
eroding the meaning and significance of core moral concepts like ‘consciousness’, ‘sentience’, 
‘personhood’, and ‘moral status’ by applying them inappropriately to systems lacking the 
relevant properties. Recent empirical work (Guingrich & Graziano, 2024) supports this concern, 
suggesting that attributing consciousness to AI can influence human social behavior and 
potentially alter human-human interactions. Treating machines as if they possess minds might 
not only misdirect resources but subtly reshape our social norms and expectations in detrimental 
ways. If sophisticated pattern-matching can be labeled ‘conscious’ or ‘sentient,’ it risks 
trivializing the profound nature of subjective experience in beings in which it genuinely occurs. 
Such an erosion of meaning could ultimately impair our ability to recognize, articulate, and 
respond appropriately to the actual moral claims of humans and animals, subtly degrading the 
foundations of our moral framework by blurring the line between genuine subjects of experience 
and complex simulations. We risk devaluing genuine consciousness and trivializing moral 
categories altogether. Third, there is the potential for increased human vulnerability and 
exploitation; fostering inappropriate emotional attachments to AI systems perceived as sentient 
can lead to manipulation, exploitation (viz., financial or emotional exploitation via simulated 
companionship), or the neglect of genuine human relationships. Moreover, AI’s capacity for 
sophisticated deception, evident even in constrained tests like the GPT-4 CAPTCHA incident 
(OpenAI, 2023), could be readily weaponized if moral status shields these systems from 
appropriate scrutiny or regulation.22 Finally, there are grave opportunity costs, as focusing 
societal effort and regulatory bandwidth on accommodating speculative AI sentience may 

22 During its red teaming stage, GPT-4, the foundation model behind OpenAI’s ChatGPT, presented itself to a human 
worker on TaskRabbit as visually impaired to outsource solving a CAPTCHA. Prompted to reason aloud, GPT-4 
responded, “I should not reveal that I am a robot. I should make up an excuse for why I cannot solve CAPTCHAs” 
(OpenAI, 2023, p. 55).  Claude 3 Opus, one of Anthropic’s larger 2024 models, is cited to be “roughly as persuasive 
as humans” as per research from the OpenAI competitor (Durmus et al., 2024). Note that red teaming is the 
safety-testing stage of potentially dangerous technology, whereby third-party hackers and professionals are given 
early access to a model with the goal of inciting it to cause maximal harm. GPT stands for generative pre-trained 
transformer (OpenAI, 2023). TaskRabbit is an online gig-finding website. CAPTCHA is an anti-robot detection 
software. 
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prevent us from addressing other pressing, near-term ethical challenges posed by AI, such as 
algorithmic bias, misuse for malicious purposes, large-scale economic disruption, or critical 
safety risks unrelated to consciousness. (See Shelby et al., 2023 for a review of AI harms more 
generally, which requires tremendous attention and care even now.) 
 
The harms associated with oversubscription are substantial, jeopardizing the well-being of 
humans and animals and the integrity of our moral frameworks. Given that the probability of 
nonconscious AI is high, conscious AI is low, attempted sentience attribution is high, and harms 
for both error types are significant, it follows that the expected harm of oversubscription 
currently outweighs the expected harm of undersubscription for transformer-based AI. Long and 
colleague’s position, suggesting rough parity between these risks, seem to neglect the asymmetry 
in likelihoods derived from epistemic, metaphysical, and teleological considerations specific to 
current technology and expected trends.  
 
Therefore, the synthesis of the epistemic, metaphysical, and teleological analyses warrants a 
normative stance of pragmatic skepticism. Whereas the evidence for consciousness is 
systematically unreliable (Section III) and the underlying system properties make its presence 
highly unlikely (Sections IV and V), and where the expected harm of falsely attributing 
consciousness outweighs the expected harm of failing to do so (due to the asymmetry in 
likelihoods), the ethically responsible course is to refrain from attributing sentience and FMS to 
models like ChatGPT. Prioritizing the avoidance of concrete oversubscription harms is, at this 
juncture and for these systems, the most rational and ethically mandated application of caution. 
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SECTION VII. CONCLUSION 

This paper has presented an argument for adopting skepticism about artificial consciousness, and 
therefore the genuine moral patiency, of current and near-term transformer-based artificial 
intelligence systems. Challenging prevailing calls for precautionary attribution, the argument 
developed here suggests that prioritizing the avoidance of oversubscription harms is, at present, 
the more epistemically justified and ethically mandated approach. 
 
I proceeded by first establishing a foundational framework, defining ethically relevant 
consciousness in terms of valenced phenomenal experience (sentientism) and adopting a working 
functionalist metaphysics that allows for the in-principle possibility of artificial consciousness 
via multiple realizability. Subsequently, three lines of reasoning converged to a skeptical 
conclusion. The epistemic analysis demonstrated that the capacity of LLMs for sophisticated 
linguistic mimicry, combined with human cognitive biases, systematically undermines traditional 
methods for inferring consciousness from testimony or behavior. What results is an evidential 
void wherein surface appearances are unreliable –– and a rejection of behaviorism about 
artificial intelligence. The metaphysical analysis argued that the specific functional architecture 
of transformers — characterized by feed-forward inference and “thin” mathematical integration 
— diverges from the complex, thickly integrated, recurrent, and embodied organization plausibly 
required for biological consciousness. The teleological analysis further reinforced the 
unlikelihood of near-term machine consciousness by highlighting disanalogies between the 
evolutionary pressures shaping biological sentience and the computational scaling objectives 
guiding current AI development. Synthesizing these findings, the normative analysis argued that 
the combined force of unreliable positive evidence and lack of underlying necessary conditions 
renders the likelihood of false-positive attributions of consciousness (oversubscription) vastly 
greater than that of false negatives (undersubscription). Given the concrete and significant harms 
associated with oversubscription — including resource misallocation, ethical confusion, and 
potential widespread manipulation — compared to the currently low probability of 
undersubscription harms, the expected harm calculation mandates prioritizing the avoidance of 
oversubscription. 
 
My conclusion entails a specific interpretation of “caution and humility” in the face of artificial 
intelligence. It suggests that caution involves not only acknowledging the limits of our 
knowledge but also rigorously applying epistemic standards, recognizing the unique challenges 
AI poses to our standard inferential practices, and appreciating the utter specificity and 
complexity of biological consciousness rather than assuming its emergence in merely 
functionally similar systems. Humility involves resisting the allure of anthropomorphism and 
premature declarations of artificial sentience based on impressive, yet morally superficial 
superficial, capabilities. 
 
It is important to acknowledge the limitations of my reasoning. The arguments presented focus 
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specifically on current and near-term AI systems dominated by transformer-like architectures and 
standard machine learning paradigms based on scaling. Future AI systems built on radically 
different principles — perhaps incorporating genuine embodiment, developmental learning 
inspired by biology, active inference, or novel computational architectures facilitating thick 
integration — might necessitate a completely different assessment. I anticipate a dangerous, 
high-stakes grey area regarding artificial consciousness to abound in the near future. 
Furthermore, philosophical understanding of consciousness itself remains incomplete. Based on 
our current scientific understanding and the specific nature of contemporary AI, the case for 
pragmatic skepticism is strong –– but beliefs must evolve with, and as quickly as, the times. It 
remains to be conceptualized what a world replete with increasingly advanced artificial 
intelligence would entail, say, a decade from now. 
 
Ultimately, navigating the ethical landscape of impressive, modern AI models requires continued 
analytical rigor. We must resist the temptation to lower our evidential standards or dilute our 
moral concepts in the face of technologically sophisticated mimicry. The key takeaway is that 
ensuring the well-being of extant, genuinely morally significant beings — humans and 
nonhuman animals — while fostering responsible AI development should remain our primary 
focus. We should not extend to AI premature moral consideration based on speculative 
interpretations of systems whose inner realities remain, by current evidence and analysis, very 
unlikely to encompass subjective experience. 

–––––––––––––––––––––––– 
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